圆的面积教案6篇

时间:2025-10-17 作者:lcbkmm

教案的全面性使教师在教学过程中能够更好地应对各种挑战与变化,我们在教案中通常会包含学生的学习活动,以促进他们的主动参与,下面是总结社小编为您分享的圆的面积教案6篇,感谢您的参阅。

圆的面积教案6篇

圆的面积教案篇1

教学目标

(1)知识与技能目标:学生结合具体情境认识组和图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。

(2)过程与方法目标:通过自主合作,培养学生独立思考、合作探究的意识。

(3)情感态度与价值观目标:学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高学习好数学的自信心。

教学重难点

教学重点:组合图形的认识及面积计算。

教学难点:对组合图形的分析。

教学工具

多媒体课件,各种基本图形纸片

教学过程

一、创设情境,谈话引入

同学们,在中国古代的建筑中我们经常会见到“外放内圆”“外圆内方”的设计,下面请同学们欣赏几组图片。(生欣赏完后)师提问:这些图片美吗?(生:美)

师:这些图片的设计中包含了我们学过的哪些平面图形?(生:圆、正方形、长方形等)

师:这些不同的几何图形拼在一起能构成精美的图案,给我们以美的享受,这说明我们的数学和现实生活联系密切。今天,我们就来学习会有圆的组合图形的'面积。(板书课题)二、提出问题,自主探究

1、教师出示例3的两幅图并出示自学提示出示自学提示:

(1)上面两幅图有什么不同之处?

(2)右图中的正方形的对角线和圆得直径有什么关系?

(3)上图中两个圆的半径都是r,你能求出正方形和圆之间的半部分的面积吗?

2、请同学们带着问题认真阅读p69-70页的内容,独立思考自学提示中的问题,若有困难可以小组内讨论。(自学时间:4分钟)三、师生联动,合作探究1、汇报交流,师生互动

生汇报问题(1):这两幅图都是由圆和正方形组成,左图是外圆内方,右图是外方内圆。

生汇报问题(2):右图中的正方形的对角线和圆得直径相等。生汇报问题(3):左图阴影面积=正方形的面积-圆的面积列式为:s正=2×2=4(m2 ) s圆=3.14×12=3.14(m2 ) 4-3.14=0、86(m2 )左图:圆的面积减去正方形的面积

( 1/2 ×2×1)×2=2(m2 ) 3.14×12=3.14(m2 ) 3.14-2=1.14(m2 )

师:同学们做的很好!可我又有问题了,若两个圆的半径都是r,那结果又是如何呢?生派代表回答:

左图;(2r)-3.14r =0.86r

右图:3.14r-( 1/2 ×2r×r)×2=1.14r当r=1m时,和前面的结果完全一致

答:左图中正方形和圆之间的面积是0、86m、右图中圆与正方形之间的面积是1.14m。

四、总结引导,知识生成这节课你有什么收获?

师顺便对生进行德育教育:在我们今后的人生道路中,我们为人处事,必须能屈能伸,可方可圆,外在大度圆融,内在正直公正。五、科学训练,提高能力1、出示教材p70做一做2、完成教材p72第9题六、堂清作业

七、作业布置p73第10、11、

课后小结

这节课你有什么收获?

课后习题

1、出示教材p70做一做

2、完成教材p72第9题

板书

含有圆的组合图形的面积

左图:s正=2×2=4(m2 )右图:( 1/2 ×2×1)×2=2(m2 )

s圆=3.14×12=3.14(m2 ) 3.14×12=3.14(m2 )

4-3.14=0.86(m2 ) 3.14-2=1.14(m2 )

圆的面积教案篇2

【教学内容】

圆的面积

【教学目标】

知识与技能:

1、能正确运用圆的面积公式计算圆的面积。

2、能运用圆的知识解决一些简单的实际问题。

过程与方法:借助割补的方法,让学生回忆旧知,应用类比迁移和小组讨论归纳等活动培养学生创造能力、解决问题的能力、科学探究能力。

情感、态度与价值观:在学生实践操作和分析过程中,体会以直代曲的转化思想,使学生进一步体会转化方法价值,促使学生实现认知上的飞跃。

【教学重难点】

重点:能正确运用圆的面积公式计算圆的面积。

难点:能运用圆的知识解决一些简单的实际问题。

【导学过程】

【知识回顾】

圆的面积公式是什么?你是怎么得到的?

【新知探究】

?一、自主预习】

1、已知r=2厘米,怎样求c?

2、判断:

(1)长方形的面积=(长+宽)×2 ( )

(2)长方形的面积=长×宽 ( )

(3)50的平方=50×2 ( )

(4)50的平方=50×50 ( )

(5)面积单位比长度单位大 ( )

3、你所学过的平面图形的面积是怎样求的?

4、自学教材第67-69页,提出自己不懂的问题。

5、把127页上的圆剪下来,按书上的方法,转化成一个长方形,说说你有些什么发现?

?二、合作探究】

圆的面积怎么求?

1、观察老师的演示,(把圆剪、分、拼)思考:

①拼组的是( )形。

②拼组的图形面积与圆的面积有什么关系?

③拼组后图形各部分相当于圆的`什么?

因为:拼组后的图形的面积=( )×( )

所以:圆的面积=( )×( )

2、圆的面积公式的应用。

①学习例1,说说解题方法,完成做一做例1。

②学习例2,说说怎样利用内圆和外圆的面积求出环形的面积?

?三、拓展归纳】

1、一个圆可以转化成一个近似的长方形,这个长方形的长相当于圆的周长的一半,即c÷2=2πr÷2=πr,长方形的宽就是圆的半径r。

2、要求圆的面积,必须知道( )。

【知识梳理】

本节课你学习了哪些知识?

【随堂练习】

1.一个圆形桌面的直径是 2米,它的面积是( )平方米。

2.已知圆的周长c,求d=( ),求r=( )。

3.圆的半径扩大2倍,直径就扩大( )倍,周长就扩大( )倍,面积就扩大( )倍。

4.环形面积s=( )。

5.用圆规画一个周长50.24厘米的圆,圆规两脚尖之间的距离应是( )厘米,画出的这个圆的面积是( )平方厘米。

6.大圆半径是小圆半径的4倍,大圆周长是小圆周长的( )倍,小圆面积是大圆面积的( )。

7.圆的半径增加1/4圆的周长增加( ),圆的面积增加( )。

8.一个半圆的周长是20.56分米,这个半圆的面积是()平方分米。

9.将一个圆平均分成1000个完全相同的小扇形,割拼成近似的长方形的周长比原来圆周长

长10厘米,这个长方形的面积是( )平方厘米。

10.在一个面积是16平方厘米的正方形内画一个最大的圆,这个圆的面积是( )平方厘米;

再在这个圆内画一个最大的正方形,正方形的面积是( )平方厘米。

11.大圆半径是小圆半径的3倍,大圆面积是84.78平方厘米,则小圆面积为( )平方厘米。

12.大圆半径是小圆半径的2倍,大圆面积比小圆面积多12平方厘米,小圆面积是( )平方厘米

圆的面积教案篇3

教学目标:

1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。

2、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,能解决一些有关实际生活的问题。

教学重点,难点:

掌握圆柱侧面积和表面积的计算方法。

运用所学的知识解决简单的实际问题。

教学过程:

一、引入新课:

前一节课我们已经认识了一个新朋友——圆柱,谁能说说这位新朋友长什么样子以及有什么特征吗?

1.圆柱是由平面和曲面围成的立体图形。

2.圆柱各部分的名称(两个底面,侧面,高)。

3.把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

同学们对圆柱已经知道得这么多了,还想对它作进一步的了解吗?今天我们就一起来研究怎样求圆柱的表面积。

二、探究新知:

以前我们学过正方体、长方体的'表面积,观察一个长方体,我们是怎么求这个长方体的表面积的呢?(六个面的面积和就是它的表面积)

同学们想一想我们要求圆柱的表面积,那么圆柱的表面积指的是什么?

教师引导,学生讨论结果:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。

板书:(圆柱的表面积=圆柱的侧面积+两个底面的面积)

1.圆柱的侧面积

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

2.侧面积练习:练习二第5题

学生审题,回答下面的问题:

这两道题分别已知什么,求什么?

小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

3.理解圆柱表面积的含义.

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+底面积×2

4.尝试练习。

(1)求下面各圆柱的侧面积。

①底面周长2.5分米,高0.6分米。

②底面直径8厘米,高12厘米。

(2)求下面各圆柱的表面积。

①底面积是40平方厘米,侧面积是25平方厘米。

②底面半径是2分米,高是5分米。

5.小结:

在计算圆柱形的表面积时,要根据给定的数据计算各部分的面积。(如:有时候给出的是底面半径,有时是底面直径。)

三、巩固练习。

1.做第14页“做一做”。(求表面积包括哪些部分?)

2.练习二第6,7题。

四、课后思考。

同学们想一想是不是所有的圆柱在计算表面积时都可以用

公式:圆柱的表面积=圆柱的侧面积+底面积×2来计算呢?

圆的面积教案篇4

教学目标

1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。

2.能正确地计算圆柱的表面积。

3会解决简单的实际问题。

4.初步培养学生抽象的逻辑思维能力。

教学重点

理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。

教学难点

能充分运用圆柱表面积的相关知识灵活的解决实际问题。

教学过程

一复习旧知。

1计算下面圆柱的侧面积。

(1)底面周长2.5米,高0.6米。

(2)底面直径4厘米,高10厘米。

(3)底面半径1.5分米,高8分米。

2求出下面长方体、正方体的表面积。

(1)长方体的长为4厘米,宽为7厘米,高为9厘米。

(2)正方体的棱长为6分米。

3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。

学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。

学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。

二新课导入。

1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)

2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?

(1)学生分组讨论。

(2)学生汇报讨论结果。

3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)

4教师进行圆柱模型表面展开演示。

(1)学生说说展开的侧面是什么图形。

学生:圆柱展开的侧面是一个长方形。

(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?

学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。

(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)

(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。

5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?

学生举例:完整的'圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。

教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。

三新课教学。

1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)

2学生尝试练习,教师巡回检查、指导。

3反馈评价:

(1)侧面积:2×2×3.14=56.52(平方分米)

(2)底面积:3.14×2×2=12.56(平方分米)

(3)表面积:56.52+12.56=81.64(平方分米)

答:它的表面积是81.64平方分米。

4学生质疑。

5教师强调答题过程的清楚完整和计算的正确。

6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?

四反馈练习:试一试。

1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

2学生交流练习结果(注意计算结果的要求)。

3教师评议。

教师:在实际运用中四舍五入法和进一法有什么不同?

学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。

五拓展练习

1教师发给学生教具,学生分组进行数据测量。

2学生自行计算所需的材料。

3计算结果汇报。

教师:同学们的答案为什么会有不同?哪里出现偏差了?

学生甲:可能是数据的测量不准确。

学生乙:可能是计算出现错误。

教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。

六巩固练习。

1计算下面图形的表面积(单位:厘米)(略)

2计算下面各圆柱的表面积。

(1)底面周长是21.52厘米,高2.5分米。

(2)底面半径0.6米,高2米。

(3)底面直径10分米,高80厘米。

3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?

4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)

圆的面积教案篇5

教学内容:六年制小学数学教科书第十一册第一单元《圆的面积》中的第一节课,数学–圆的面积(一)。

教学目的:

1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。

教学重点:理解和掌握圆面积的计算公式的推导过程

教学难点:圆面积计算公式的推导

教学过程:

一、创设情境,提出问题

(课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的'情景。(生看完提问题)

生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?

二、引导探究,构建模型

a:启发猜想

师:羊吃到草的最大面积最大是圆形:

1、这个圆的面积有多大猜猜看;

2、试想圆的面积和哪些条件有关?

3、怎样推导圆的面积公式?(生试说)

b:分组实验,发现模型

学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:

1、你摆的是什么图形?

2、你摆的图形与圆的面积有什么关系?

3、图形各部分相当于圆的什么?

4、你如何推导出圆的面积?

请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况,小学数学教案《数学–圆的面积(一)》。

三、应用知识,拓展思维

1、师:要求圆的面积必须知道什么?

2、运用公式计算面积

a完成羊吃草的面积

b完成课后“做一做”

c一个圆的直径是10厘米,它的面积是多少平方厘米?

d找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物直径(厘米)半径(厘米)面积(平方厘米)

3、应用知识解决身边的实际问题(知识应用)

下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是2.4元,学校一共要付多少钱才能完成?

四、归纳总结,完善认知

今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?

圆的面积教案篇6

教材分析

1、《圆的面积》是人教版小学数学六年级上册第五单元中的一节课,本节内容包括教材67-71页例1、例2及69页“做一做”。

2、本节课是在学习了圆的周长以后进行教学的,为后面学习求阴影部分面积做了铺垫。

学情分析

小学六年级学生在学习空间图形方面,已经具有一定的想象能力,并有了一定程度的计算能力,在学习方法上也有了一定的积淀,同时他们也具备一定的逻辑思维、抽象推理能力,他们能够自主、合作、探究地进行学习,对学习数学的兴趣浓厚。但是作为十来岁的学生,他们对事物的认识是十分有限的,加上他们的个人表现欲望十分强烈,自我控制能力差等因素的影响。因此 在教学时我凭借课件 结合学生的'实际情况, 联系学生已有的知识点 设计教学环节确定教学方法, 确立教学重点、难点和目标 减少盲目性 注意培养学生的动手动脑能力,让学生通过动手把圆等分成16等份和32等份,学会用转化的思想找到圆的面积计算公式,让学生在动脑动手中掌握知识。

教学目标

一、知识与技能

1、学生通过观察、操作、分析和讨论,推导出圆的面积公式。

2、能够利用公式进行简单的面积计算。

3、培养学生空间概念和逻辑思维能力。

二、过程与方法

经历从未知转化已知过程,体验自主探究,合作交流的方法。

三、情感态度与价值观

渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

教学重点和难点

重点:正确计算圆的面积。

难点:圆的面积公式推导过程。