三角函数教案8篇

时间:2025-10-18 作者:Indulgence

教案的书写需要清晰明了,以便于后续的教学实施和分享,教案的实施效果应通过学生的反馈和表现来评估,以下是总结社小编精心为您推荐的三角函数教案8篇,供大家参考。

三角函数教案8篇

三角函数教案篇1

教学目标

1、知识与技能

(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;

(2)能熟练运用正弦函数的性质解题。

2、过程与方法

通过正弦函数在r上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

3、情感态度与价值观

通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

教学重难点

重点:正弦函数的性质。

难点:正弦函数的性质应用。

教学工具

投影仪

教学过程

创设情境,揭示课题

同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在r上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?

探究新知

让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:

(1)正弦函数的定义域是什么?

(2)正弦函数的值域是什么?

(3)它的最值情况如何?

(4)它的正负值区间如何分?

(5)?(x)=0的`解集是多少?

师生一起归纳得出:

1.定义域:y=sinx的定义域为r

2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)

再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]

三角函数教案篇2

一、目标:

⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;

2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;

3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.

二、教学重、难点

重点:公式 及 的`推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.

难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.

三、学法与教学用具

利用三角函数线的定义, 推导同角三角函数的基本关系式: 及 ,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.

教学用具:圆规、三角板、投影

四、教学过程

【创设情境】

与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.

【探究新知】

探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论??

下同一个角不同三角函数之间的关系吗?

如图:以正弦线 ,余弦线 和半径 三者的长构成直角三角形,而且 .由勾股定理由 ,因此 ,即 .

根据三角函数的定义,当 时,有 .

这就是说,同一个角 的正弦、余弦的平方等于1,商等于角 的正切.

【例题讲评】

例1化简:

解:原式

例2 已知

解:

(注意象限、符号)

例3求证:

分析:思路1.把左边分子分母同乘以 ,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx)先满足右式分子的要求;思路3:用作差法,不管分母,只需将分子转化为零;思路4:用作商法,但先要确定一边不为零;思路5:利用公分母将原式的左边和右边转化为同一种形式的结果;思路6:由乘积式转化为比例式;思路7:用综合法.

证法1:左边= 右边,

∴原等式成立

证法2:左边= =

= 右边

证法3:

证法4:∵cosx≠0,∴1+sinx≠0,∴ ≠0,

∴ = = =1,

∴左边=右边 ∴原等式成立.

例4已知方程 的两根分别是 ,

解:

(化弦法)

例5已知 ,

解:

?课堂练习】

化简下列各式

1.

2.

3.

练习答案:

解:(1)原式=

(2)原式=

?学习小结】

(1)同角三角函数的关系式的前提是“同角”,因此 , .

(2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.

(1)作业:习题1.2a组第10,13题.

(2)熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关

系式;注意三角恒等式的证明方法与步骤.

?课后作业】见学案

?板书设计】略

三角函数教案篇3

一. 教学内容:平面向量与解析几何的综合

二. 教学重、难点:

1. 重点:

平面向量的基本,圆锥曲线的基本。

2. 难点:

平面向量与解析几何的内在联系和知识综合,向量作为解决问题的一种工具的应用意识。

?典型例题

[例1] 如图,已知梯形abcd中, ,点e分有向线段 所成的比为 ,双曲线过c、d、e三点,且以a、b为焦点,求双曲线的离心率.

解:如图,以ab的垂直平分线为 轴,直线ab为 轴,建立直角坐标系 轴,因为双曲线经过点c、d且以ab为焦点,由对称性知c、d关于 轴对称

设a( )b( 为梯形的高

设双曲线为 则

由(1): (3)

将(3)代入(2):∴ ∴

[例2] 如图,已知梯形abcd中, ,点e满足 时,求离心率 的取值范围。

解:以ab的垂直平分线为 轴,直线ab为 轴,建立直角坐标系 轴。

因为双曲线经过点c、d,且以a、b为焦点,由双曲线的对称性,知c、d关于 轴对称 高中生物。

依题意,记a( )、e( 是梯形的高。

设双曲线的方程为 ,则离心率由点c、e在双曲线上,将点c、e的坐标和由(1)式,得 (3)

将(3)式代入(2)式,整理,得故 ,得解得所以,双曲线的离心率的取值范围为

[例3] 在以o为原点的直角坐标系中,点a( )为 的直角顶点,已知 ,且点b的纵坐标大于零,(1)求 关于直线ob对称的圆的方程。(3)是否存在实数 ,使抛物线 的取值范围。

解:

(1)设 ,则由 ,即 ,得 或

因为

所以 ,故

(2)由 ,得b(10,5),于是直线ob方程:由条件可知圆的标准方程为:得圆心(

设圆心( )则 得 ,

故所求圆的方程为(3)设p( )为抛物线上关于直线ob对称的两点,则

即 、于是由故当 时,抛物线(3)二:设p( ),pq的中点m(∴ (1)-(2): 代入∴ 直线pq的`方程为

∴ ∴

[例4] 已知常数 , 经过原点o以 为方向向量的直线与经过定点a( 方向向量的直线相交于点p,其中 ,试问:是否存在两个定点e、f使 为定值,若存在,求出e、f的坐标,不存在,说明理由。(20xx天津)

解:根据题设条件,首先求出点p坐标满足的方程,据此再判断是否存在两定点,使得点p到两定点距离的和为定值。

∵ ∴

因此,直线op和ab的方程分别为 和消去参数 ,得点p( ,整理,得

① 因为(1)当(2)当 时,方程①表示椭圆,焦点e 和f 为合乎题意的两个定点;

(3)当 时,方程①也表示椭圆,焦点e 和f( )为合乎题意的两个定点。

[例5] 给定抛物线c: 夹角的大小,(2)设 求 在 轴上截距的变化范围

解:

(1)c的焦点f(1,0),直线 的斜率为1,所以 的方程为 代入方程 )、b(则有

所以 与

(2)设a( )由题设

即 ,由(2)得 ,

依题意有 )或b(又f(1,0),得直线 方程为

当 或由 ,可知∴

直线 在 轴上截距的变化范围为

[例6] 抛物线c的方程为 )( 的两条直线分别交抛物线c于a( )两点(p、a、b三点互不相同)且满足 ((1)求抛物线c的焦点坐标和准线方程

(2)设直线ab上一点m,满足 ,证明线段pm的中点在 轴上

(3)当 ),求解:(1)由抛物线c的方程 ),准线方程为

(2)证明:设直线pa的方程为

点p( )的坐标是方程组 的解

将(2)式代入(1)式得

于是 ,故 (3)

又点p( )的坐标是方程组 的解

将(5)式代入(4)式得 ,故

由已知得, ,则设点m的坐标为( ),由 。则

将(3)式和(6)式代入上式得

即(3)解:因为点p( ,抛物线方程为由(3)式知 ,代入

将 得因此,直线pa、pb分别与抛物线c的交点a、b的坐标为

于是, ,

因即 或

又点a的纵坐标 满足当 ;当 时,所以,

[例7] 已知椭圆 和点m( 的取值范围;如要你认为不能,请加以证明。

解: 不可能为钝角,证明如下:如图所示,设a( ),直线 的方程为

由 得 ,又 , ,若 为钝角,则

即 ,即

即∴

?模拟】(答题时间:60分钟)

1. 已知椭圆 ,定点a(0,3),过点a的直线自上而下依次交椭圆于m、n两个不同点,且 ,求实数 的取值范围。

2. 设抛物线 轴,证明:直线ac经过原点。

3. 如图,设点a、b为抛物线 ,求点m的轨迹方程,并说明它表示什么曲线。

4. 平面直角坐标系中,o为坐标原点,已知两点a(3,1),b( )若c满足 ,其中 ,求点c的轨迹方程。

5. 椭圆的中心是原点o,它的短轴长为 ,相应于焦点f( )的准线 与 轴相交于点a, ,过点a的直线与椭圆相交于p、q两点。

(1)求椭圆的方程;

(2)设 ,过点p且平行于准线 的直线与椭圆相交于另一点m,证明 ;

(3)若 ,求直线pq的方程。

?试题答案】

1. 解:因为 ,且a、m、n三点共线,所以 ,且 ,得n点坐标为

因为n点在椭圆上,所以即所以

解得2. 证明:设a( )、b( )( ),则c点坐标为( 、

因为a、f、b三点共线,所以 ,即

化简得

由 ,得

所以

即a、o、c三点共线,直线ac经过原点

3. 解:设 、 、则 、

∵ ∴

即又

即 (2) ∵ a、m、b三点共线

化简得 ③

将①②两式代入③式,化简整理,得

∵ a、b是异于原点的点 ∴ 故点m的轨迹方程是 ( )为圆心,以4. 方法一:设c(

由 ,且 ,

∴ 又 ∵ ∴

∴ 方法二:∵ ,∴ 点c在直线ab上 ∴ c点轨迹为直线ab

∵ a(3,1)b( ) ∴ 5. 解:(1) ;(2)a(3,0),

由已知得 注意解得 ,因f(2,0),m( )故

(3)设pq方程为 ,由

得依题意 ∵

∴ ①及 ③

由①②③④得 ,从而所以直线pq方程为

三角函数教案篇4

一. 教学内容:三角函数

二、高考要求

(一)理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。

(二)掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和差及倍角公式)

(三)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。

(四)会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及y=asin(ωx φ)的简图、理解a、ω、 的物理意义。

三、热点分析

1. 近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强。

2. 对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题

(1)与三角函数单调性有关的问题;

(2)与三角函数图象有关的问题;

(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;

(4)与周期有关的问题

3. 基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化。解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解。

4. 立足课本、抓好基础。从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在复习中首先要打好基础。在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度。

四、复习建议

本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:

(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理能力。

(2)对公式要抓住其特点进行记忆。有的公式运用一些顺口溜进行记忆。

(3)三角函数是中学阶段研究的一类初等函数。故对三角函数的性质研究应结合一般函数研究方法进行对比学习。如定义域、值域、奇偶性、周期性、图象变换等。通过与函数这一章的对比学习,加深对函数性质的理解。但又要注意其个性特点,如周期性,通过对三角函数周期性的复习,类比到一般函数的周期性,再结合函数特点的研究类比到抽象函数,形成解决问题的能力。

(4)由于三角函数是我们研究数学的一门基础工具,近几年高考往往考查知识网络交汇处的知识,故学习本章时应注意本章知识与其它章节知识的联系。如平面向量、参数方程、换元法、解三角形等。(2003年高考应用题源于此)

(5)重视数学思想方法的复习,如前所述本章试题都以选择、填空题形式出现,因此复习中要重视选择、填空题的一些特殊解题方法,如数形结合法、代入检验法、特殊值法,待定系数法、排除法等。另外对有些具体问题还需要掌握和运用一些基本结论。如:关于对称问题,要利用y=sinx的对称轴为x=kπ+(k∈z),对称中心为(kπ,0),(k∈z)等基本结论解决问题,同时还要注意对称轴与函数图象的交点的纵坐标特征。在求三角函数值的问题中,要学会用勾股数解题的方法,因为高考试题一般不能查表,给出的数都较特殊,因此主动发现和运用勾股数来解题能起到事半功倍的效果。

(6)加强三角函数应用意识的训练,1999年高考理科第20题实质是一个三角问题,由于考生对三角函数的概念认识肤浅,不能将以角为自变量的函数迅速与三角函数之间建立联系,造成思维障碍,思路受阻。实际上,三角函数是以角为自变量的函数,也是以实数为自变量的函数,它产生于生产实践,是客观实际的抽象,同时又广泛地应用于客观实际,故应培养实践第一的观点。总之,三角部分的考查保持了内容稳定,难度稳定,题量稳定,题型稳定,考查的重点是三角函数的概念、性质和图象,三角函数的求值问题以及三角变换的方法。

(7)变为主线、抓好训练。变是本章的主题,在三角变换考查中,角的变换,三角函数名的变换,三角函数次数的变换,三角函数式表达形式的变换等比比皆是,在训练中,强化“变”意识是关键,但题目不可太难,较特殊技巧的题目不做,立足课本,掌握课本中常见问题的解法,把课本中习题进行归类,并进行分析比较,寻找解题规律。针对高考中的题目看,还要强化变角训练,经常注意收集角间关系的观察分析方法。另外如何把一个含有不同名或不同角的三角函数式化为只含有一个三角函数关系式的训练也要加强,这也是高考的重点。同时应掌握三角函数与二次函数相结合的题目。

(8)在复习中,应立足基本公式,在解题时,注意在条件与结论之间建立联系,在变形过程中不断寻找差异,讲究算理,才能立足基础,发展能力,适应高考。

在本章内容中,高考试题主要反映在以下三方面:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。多数题型为选择题或填空题;其次是三角函数式的恒等变形。如运用三角公式进行化简、求值解决简单的综合题等。除在填空题和选择题出现外,解答题的中档题也经常出现这方面内容。

另外,还要注意利用三角函数解决一些应用问题。

三角函数教案篇5

第一教时

教材:

角的概念的推广

目的:

要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

过程:

一、提出课题:“三角函数”

回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。

二、角的概念的推广

1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”

2.讲解:“旋转”形成角(p4)

突出“旋转” 注意:“顶点”“始边”“终边”

“始边”往往合于轴正半轴

3.“正角”与“负角”——这是由旋转的方向所决定的。

记法:角 或 可以简记成

4.由于用“旋转”定义角之后,角的范围大大地扩大了。

1° 角有正负之分 如:a=210° b=-150° g=-660°

2° 角可以任意大

实例:体操动作:旋转2周(360°×2=720°) 3周(360°×3=1080°)

3° 还有零角 一条射线,没有旋转

三、关于“象限角”

为了研究方便,我们往往在平面直角坐标系中来讨论角

角的顶点合于坐标原点,角的始边合于 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)

例如:30° 390° -330°是第Ⅰ象限角 300° -60°是第Ⅳ象限角

585° 1180°是第Ⅲ象限角 -20xx°是第Ⅱ象限角等

四、关于终边相同的角

1.观察:390°,-330°角,它们的终边都与30°角的终边相同

2.终边相同的角都可以表示成一个0°到360°的.角与 个周角的和

390°=30°+360°

-330°=30°-360° 30°=30°+0×360°

1470°=30°+4×360°

-1770°=30°-5×360°

3.所有与a终边相同的角连同a在内可以构成一个集合

即:任何一个与角a终边相同的角,都可以表示成角a与整数个周角的和

4.例一 (p5 略)

五、小结: 1° 角的概念的推广

用“旋转”定义角 角的范围的扩大

2°“象限角”与“终边相同的角”

六、作业: p7 练习1、2、3、4

习题1.4 1

三角函数教案篇6

一、指导思想与理论依据

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析

三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。

三、学情分析

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

四、教学目标

(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

(2)、能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

(3)、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

(4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

五、教学重点和难点

1、教学重点

理解并掌握诱导公式。

2、教学难点

正确运用诱导公式,求三角函数值,化简三角函数式。

六、教法学法以及预期效果分析

“授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。

1、教法

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。

2、学法

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题。

在本节课的教学过程中,本人引导学生的学法为思考问题 共同探讨 解决问题 简单应用 重现探索过程 练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。

3、预期效果

本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。

七、教学流程设计

(一)创设情景

1、复习锐角300,450,600的三角函数值;

2、复习任意角的三角函数定义;

3、问题:由 ,你能否知道sin2100的值吗?引如新课。

设计意图

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。

(二)新知探究

1、 让学生发现300角的终边与2100角的终边之间有什么关系;

2、让学生发现300角的终边和2100角的终边与单位圆的交点为 、 的坐标有什么关系;

3、sin2100与sin300之间有什么关系。

设计意图

由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫。

(三)问题一般化

三角函数教案篇7

一、基础知识回顾:

1、仰角、俯角 2、坡度、坡角

二、基础知识回顾:

1、在倾斜角为300的山坡上种树,要求相邻两棵数间的水平距离为3米,那么相邻两棵树间的斜坡距离为 米

2、升国旗时,某同学站在离旗杆底部20米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角为300,若双眼离地面1.5米,则旗杆高度为 米(保留根号)

3、如图:b、c是河对岸的两点,a是对岸岸边一点,测得∠acb=450,bc=60米,则点a到bc的距离是 米。

3、如图所示:某地下车库的入口处有斜坡ab,其坡度i=1:1.5,

则ab= 。

三、典型例题:

例2、右图为住宅区内的两幢楼,它们的高ab=cd=30米,两楼间的距离ac=24米,现需了解甲楼对乙楼采光的影响,当太阳光与水平线的夹角为300时,求甲楼的影子在乙楼上有多高?

例2、如图所示:在湖边高出水面50米的山顶a处望见一艘飞艇停留在湖面上空某处,观察到飞艇底部标志p处的仰角为450,又观其在湖中之像的俯角为600,试求飞艇离湖面的高度h米(观察时湖面处于平静状态)

例3、如图所示:某货船以20海里/时的速度将一批重要货物由a处运往正西方的b处,经过16小时的航行到达,到达后必须立即卸货,此时接到气象部门通知,一台风中心正以40海里/时的速度由a向北偏西600方向移动,距离台风中心200海里的圆形区域(包括边界)均会受到影响。

(1)问b处是否会受到台风的影响?请说明理由。

(2)为避免受到台风的影响,该船应该在多少小时内卸完货物?

(供选数据:=1.4 =1.7)

四、巩固提高:

1、 若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高 米。

2、如图:a市东偏北600方向一旅游景点m,在a市东偏北300的公路上向前行800米到达c处,测得m位于c的北偏西150,则景点m到公路ac的距离为 。(结果保留根号)

3、同一个圆的内接正方形和它的外切正方形的边长之比为( )

a、sin450 b、sin600 c、cos300 d、cos600

3、如图所示,梯子ab靠在墙上,梯子的底端a到墙根o的距离为2米,梯子的顶端b到地面的距离为7米,现将梯子的'底端a向外移动到a,使梯子的底端a到墙根o的距离等于3米,同时梯子的顶端b下降至b,那么bb( )(填序号)

a、等于1米b、大于1米c、小于1米

5、如图所示:某学校的教室a处东240米的o点处有一货物,经过o点沿北偏西600方向有一条公路,假定运货车辆形成的噪音影响范围在130米以内。

(1)通过计算说明,公路上车辆的噪音是否对学校造成影响?

(2)为了消除噪音对学校的影响,计划在公路边修一段隔音墙,请你计算隔音墙的长度(只考虑声音的直线传播)

三角函数教案篇8

目标:

1、 理解锐角三角函数的定义,掌握锐角三角函数的表示法;

2、 能根据锐角三角函数的定义计算一个锐角的各个三角函数的值;

3、 掌握 rt △中的锐角三角函数的表示:

sina= , cosa= , tana=

4 、掌握锐角三角函数的取值范围;

5 、通过经历三角函数概念的形成过程,培养学生从特殊到一般及数形结合的思想方法。

教学重点:

锐角三角函数相关定义的理解及根据定义计算锐角三角函数的值。

教学难点:

锐角三角函数概念的形成。

教学过程:

一、创设情境:

鞋跟多高合适?

美国人体工程学研究人员卡特·克雷加文调查发现, 70 %以上的女性喜欢穿鞋跟高度为 6 至 7 厘米左右的高跟鞋。但专家认为穿 6 厘米以上的高跟鞋腿肚、背部等处的肌肉非常容易疲劳。

据研究,当高跟鞋的鞋底与地面的夹角为 11 度左右时,人脚的感觉最舒适。假设某成年人脚前掌到脚后跟长为 15 厘米,不难算出鞋跟在 3 厘米左右高度为最佳。

问:你知道专家是怎样计算的吗?

显然,高跟鞋的鞋底、鞋跟与地面围城了一个直角三角形,回顾直角三角形的已学知识,引出课题。

二、探索新知:

1 、下面我们一起来探索一下。

实践一:作一个 30 °的∠ a ,在角的边上任意取一点 b ,作 bc ⊥ ac 于点 c 。

⑴计算,,的值,并将所得的结果与你同伴所得的结果进行比较。∠ a=30 °时学生 1 结果 学生 2 结果 学生 3 结果 学生 4 结果 ⑵将你所取的 ab 的值和你的同伴比较。

实践二:作一个 50 °的∠ a ,在角的边上任意取一点 b ,作 bc ⊥ ac 于点 c 。

( 1 )量出 ab , ac , bc 的长度(精确到 1mm )。

( 2 )计算bc / ab ,ac / ab,的值(结果保留 2 个有效数字),并将所得的结果与你同伴所得的结果进行比较。∠ a=50 °时 ab ac bc 学生 1 结果 学生 2 结果 学生 3 结果 学生 4 结果 ( 3 )将你所取的 ab 的值和你的同伴比较。

2 、经过实践一和二进行猜测

猜测一:当∠ a 不变时,三个比值与 b 在 am 边上的位置有无关系?

猜测二:当∠ a 的大小改变时,相应的三个比值会改变吗?

3、 用理论推理

如图, b 、 b 1 是一边上任意两点,作 bc ⊥ ac 于点 c , b 1 c 1 ⊥ ac 1 于点 c 1 ,

判断比值与,与,与是否相等,并说明理由。

4 、归纳总结得到新知:

⑴三个比值与 b 点在的边 am 上的位置无关;

⑵三个比值随的变化而变化,但(0 °﹤∠α﹤90 ° )确定时,三个比值随之确定;

比值,,都是锐角的函数

比值叫做的正弦, sinα =

比值叫做的余弦, cos α=

比值叫做的正切, tanα =

( 3 )注意点: sin α, cos α, tan α都是一个完整的符号,单独的 “ sin ”没有意义,其中前面的“∠”一般省略不写。

强化读法,写法;分清各三角函数的自变量和应变量。

三、深化新知

1 、三角函数的定义

在 rt △ abc 中,如果锐角 a 确定,那么∠ a 的对边与斜边的比、邻边与斜边的比也随之确定 ,则有

sina =

cosa=

2 、提问:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗?

(点拨)直角三角形中,斜边大于直角边。

生:独立思考,尝试回答,交流结果。

明确:锐角的三角函数值的范围: 0 < sin α< 1 , 0 < cos α< 1。

四、巩固新知

例 1. 如图 , 在 rt △ abc 中 , ∠ c=90 °, ab=5,bc=3,

( 1 )求∠ a 的正弦、余弦和正切 。

( 2 )求∠ b 的正弦、余弦和正切。

分析:由勾股定理求出 ac 的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。

提问:观察以上计算结果 , 你发现了什么 ?

明确: sina=cosb , cosa=sinb , tana · tanb=1

五、升华新知

例 2 . 如图 : 在 rt △ abc, ∠ b=90 ° ,ac=200,sina=0.6 ,求 bc 的长 。

由例 2 启发学生解决情境创设中的问题。

六、课堂小结:谈谈今天的收获

1 、内容总结

( 1 )在 rt Δ abc 中 , 设∠ c=90 ° ,∠α为 rt Δ abc 的一个锐角,则

∠α的正弦,∠α的余弦,

∠α的正切

2 、方法归纳

在涉及直角三角形边角关系时,常借助三角函数定义来解

四、布置作业